
Loop-Free Routing Using a Dense Label Set
in Wireless Networks

Marc Mosko and J.J. Garcia-Luna-Aceves
Computer Engineering Dept.

Baskin School of Engineering
University of California
Santa Cruz, CA 95064

fmmosko, jjg@soe.ucsc.edu

Abstract— We present a new class of on-demand routing pro-
tocols called Split Label Routing (SLR). The protocols guarantee
loop-freedom at every instant by ensuring that node labels
are always in topological order, and thus induce a directed
acyclic graph (DAG). The novel feature of SLR is that it uses
a dense ordinal set with a strict partial order to label nodes.
For any two labels there is always some label in between them.
This allows SLR to “insert” a node in to an existing DAG,
without the need to relabel predecessors. SLR inherently provides
multiple paths to destinations. We present a practical, finitely
dense implementation that uses a destination-controlled sequence
number. The sequence number functions as a reset to node
ordering when no more label splits are possible. The sequence
number is changed only by the destination. Simulations show
that our proposed protocol outperforms existing state-of-the-art
on-demand routing protocols.

I. I NTRODUCTION

A wireless ad hoc network consists of nodes with radio
network interfaces cooperatively relaying data without the aid
of such fixed infrastructures as cell sites or base stations.
Examples of ad hoc networks are laptops or PDAs with
wireless interfaces in a meeting room, or emergency rescue
workers rapidly establishing temporary networks. The routing
problem in a wireless ad hoc network is to find multi-hop
paths between sources and sinks of data. Because of mo-
bility, unreliable channels, limited power, limited bandwidth,
and channel contention, routing protocols designed for wired
networks exhibit poor performance over ad hoc networks.
We present a new class of on-demand protocols designed for
wireless ad hoc networks that is loop-free at every instant.

In our discussion of routing, we use the termspredecessor
andsuccessorin the context of an underlying directed acyclic
graph (DAG). At a nodei, for destinationj, the successors
of node i for j are those intermediary nodes along the path
from i to j, including j. When used in the singular, “the
successor” ofi to j means the adjacent successor ofi to j.
If using multiple paths per destination (called “multi-path”),
“the successor” means collectively all such one-hop nodes.
The predecessors ofi for j are those nodes that havei on
their successor paths toj. For loop-freedom, when a node
picks a new successor for a destination, it must ensure that no
predecessors are on that new successor path.

A class of on-demand routing protocols use “link reversal”
algorithms that maintain a DAG by manipulating edges in

a digraph. These protocols include GB [6], LMR [4] , and
TORA [14]. GB and LMR operate by reversing the direction
of certain links at each iteration of the algorithm. This is
realized by associating an ordered pair(�i; i) to each node
i and defining a lexicographic total order on the label. The
destination has the minimum label. If a node is a local
minimum with respect to its neighbors, it does not have a path
to the destination. Such a node increases its label, reversing
some or all of its links, and the algorithm continues. The idea
behind TORA is that a node that becomes a local minimum
chooses a new label such that it becomes a global maximum.

Another class of on-demand loop-free protocols uses source
routing. DSR [10] builds complete hop-by-hop routes at each
source node. Packet paths are inherently loop-free. DSR works
by broadcasting a route request over the network and recording
the path of the packet. When a node with a path to the
destination receives the request, it can send a reply along the
reverse route. The reply contains the responding node’s path
and records its route back to the requesting node. Thus, the
requesting node has the complete path.

A third class of on-demand loop-free protocols operate by
maintaining node labels in a topological order. AODV [15],
ROAM [17], and LDR [7] use such a technique. AODV
maintains a sequence number and hop-count per destination
at each node. AODV’s use of sequence numbers is such that
when a node looses its successor to a destination and increases
the stored sequence number to prevent loops, it generally
becomes a local maximum in the topological ordering. ROAM
and LDR are based on DUAL [8].

The basis of DUAL is the concept of feasible distance (FD).
Each node keeps a FD for each known destination. The FD
tracks the minimum distance ever known to the destination,
and is thus a non-increasing function over time. To prevent
loops, a node may only use a successor whose reported
distance is less than the stored FD. Because link costs are
positive, it would be impossible for a predecessor to have a
smaller distance than the stored FD. One problem is how to
reset a node’s FD to a larger value so it may forget about old
paths and begin using a longer path, such as when a link fails.
DUAL implements a diffusing computation [5] over reliable
communications to break potential loops and reset predecessor
FDs before a node may change successor to a longer path.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Loop-Free Routing Using a Dense Label Set in Wireless Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Notation

General SLR
L An ordinal set for labeling vertices.
Li The label of nodei for a given destination.
Mi The minimum label of nodei’s predecessors based on a

request.
G
i

The proposed new label for nodei based on a routing event.
Si At node i, the set of nodes used as successors to a given

destination.
SRP Implementation

snA
T

The sequence number ofT as known at nodeA.
dA
T

The measured distance from nodeA to T . If all link costs
are 1, it is a hop count.

F
A

T
The feasible distance pair(N;D) at nodeA for T . The
proper fraction isN=D .

lc
A

B
The link cost from nodeA to neighborB, assumed to be
positive and equal to unity if using hop count metrics.

? An advertisement, for examplesn?
T

is the sequence number
in an advertisement for destinationT .

A solicitation, for examplesn#
T

is the sequence number in a
solicitation for destinationT . Each issuer adds its own unique
identifier rreqid.

LF
T

The last-hop feasible distance for destinationT . Contained
in an advertisementLF?

T
or in the advertisement portion of

a RREQ.
ld
T

The last-hop measured distance for destinationT . Contained
in an advertisementld?

T
or in the advertisement portion of

a RREQ.
rr
#

T
Reset required bit (T bit) for solicitation # for destination
T . Indicates that an invariant ordering violation could occur
and the path must be reset.

OA
T

The ordering of nodeA for destinationT based on sequence
number and feasible distance proper fraction; may also refer
to an advertisementO?

T
or a solicitationO#

T
.

OA? The cached ordering for the # corresponding to?, based on
the source andrreqid.

This need for reliable communication over multiple hops
makes DUAL impractical for wireless ad hoc networks.
ROAM, an adaptation of DUAL to wireless networks, uses
a feasible distance and diffusing computation, so it has a
high overhead. LDR also uses a feasible distance, but instead
of resetting all predecessors to maintain ordering, it uses
a destination-controlled sequence number to denote fresher
routes. In many cases, LDR can repair broken routes with
localized recovery based on feasible distance ordering, but in
some cases a route request and route reply travel over out-of-
order nodes whose feasible distances cannot be put in-order.
In such cases, LDR requires the route request to travel all the
way to the destination, which may issue a route reply with
a larger sequence number. The larger sequence number resets
the feasible distances along the reply path to establish a new
ordering.

The feasible distance establishes an ordering in the graph.
Along a pathfvk; : : : ; v0g from node vk to node v0, the
DUAL condition SNC [8, p. 132] maintains the invariant
that fdvi�1 � dvi�1 < fd vi � dvi < fd vi+1 . This reduces
to an ordering of feasible distances. More generally – and
departing from SNC – for the set of all nodesP that are
adjacent predecessors of nodevi for the destinationv0, nodevi
must satisfy(8k 2 P) (fdvi < fdvk) and fd vi�1 < fd vi . The
nodevi, when choosing a new successorvi�1, must maintain

this doubly bounded inequality. It is possible for nodevi to
set its feasible distance to any value in that bound without
the possibility of creating loops or breaking the ordering that
prevents future loops. In specific, a node may independently
decrease its feasible distance to just above the maximum of
all successors’ reported feasible distance.

The present work generalizes the concept of feasible dis-
tance routing to use a sub-divisible feasible distance, such
as a lexicographically sorted string or a subset of the real
numbers. This allows nodes to stitch together feasible distance
orderings that maintain the doubly bounded inequality using
locally controlled information.

Section II presents the Split Label Routing (SLR) class of
protocols. We show that SLR is loop-free at every instant and
that it is satisfiable. Section III describes an implementation of
SLR, called Split-label Routing Protocol (SRP) using a label
set constructed from proper fractions and a sequence number.
Section IV shows that SRP is an instance of SLR. The proofs
show that it has correct operation even with a fixed-size label
set. Section V presents simulation results showing that SRP out
performs existing protocols in terms of delivery ratio, packet
latency, and network load.

II. SPLIT LABEL ROUTING

We first introduce the principles of Split Label Routing
(SLR) assuming an unbounded label set. In such a set, there is
no need for path resets, however the size of the labels becomes
large. In the next section, we present a specific implementation
called Split-label Routing Protocol (SRP), using a fixed label
set that grows no faster than a real-time clock. Ordering in
SLR is based on an ordinal set, not the hop count or measured
distance to a destination. We assume that a routing protocol
based on SLR computes a measured distance based on link
costs and propagates that information as a QoS parameter with
routing advertisements. A node may use the measured distance
to choose between possible multi-paths along with any other
QoS metrics. The procedures below compute the measured
distance assuming symmetric link costs.

Our work is based on maintaining vertex labels in topolog-
ical order. In SLR, the vertex label setL has several special
properties, one of which is a strict linear order(L; <). Similar
to natural numbers, two elements must satisfy exactly one of
a < b; a = b; or a > b, and all a; b 2 L are comparable.
A directed graph is in topological order if and only if for
every directed edge(i; j), the vertex labels satisfyLj < Li. It
is well-known that a digraph is acyclic if and only if it has a
topological order [1, p. 77]. Our definition of topological order
is reversed from Ahuja [1], where it is defined asLi < Lj .
In SLR, the node with the minimum label is the destination;
it is a vertex with zero out-degree in the digraph.

LetL be a dense, infinite ordinal set with a greatest element,
and a strict ordering operator<. It is convenient if the set
also has a smallest element, as that is a natural label for
the destination of a DAG. Let each element" 2 L, except
the greatest, have a well-defined next-element"+, such that
" < "+. The greatest element is not the next-element of any

2

element. We use the symbol1 to denote the greatest element.
L is clearly sufficient to label any finite DAG in topological
order, because it has at least as many elements as the natural
numbers.

A simple example of such an ordinal set is the proper
fractions with a least element0=1 and a maximum element
1=1 [9, p. 35]. Because we will make extensive use of proper
fractions in SRP, we review several of their properties. A
proper fractionm=n is made up of two positive integersm and
n, wherem < n. The range of proper fractions is the open
interval (0; 1). The inequality in Eq. 1 [9, p. 35] [11, p. 14]
defines how we interpolate between two elementsm=n < p=q.
It is known as themediant, which has the same numerical
value as the mean numerator divided by the mean denominator
(m+n)=2
(p+q)=2 . Eq. 2 defines the next-element operator, which is

equivalent to the mediant ofm=n and1=1.

m

n
<

m+ p

n+ q
<
p

q
(1)

�m
n

�+
=
m+ 1

n+ 1
(2)

When SLR initializes a graph, the destination,T , may have
any label for itself, except the greatest, and all other nodes
have the greatest label. The DAG toT is empty; no node has
a successor path toT . The initial label forT is arbitrary and
may be any label except the greatest. Whatever labelT first
issues for itself isde factothe minimum label.

Because any SLR-based routing protocol maintains a sepa-
rate DAG per destination, we only consider the operation of
such a protocol for one arbitrary destination. In an error-free
DAG, only the destination has in-bound arcs and zero out-
degree. Due to mobility or channel conditions, however, other
nodes may temporarily have positive in-degree and zero out-
degree. For each destination, a nodei maintains its current
label Li and a table of successor labels. For each successor
link (i; j) nodei records the advertised label ofj in Sij . Nodei
may then compute the maximum successor labelSimax, which
is a strict lower bound fori’s own label. If the successor table
is empty,Simax is the least element ofL.

We use a route error procedure similar to AODV, which
we only outline here. If a node loses its last successor, it
transmits a route error to any and all predecessors. If a node
receives a data packet for a destination to which it has no
successor, it unicasts a route error message to the last-hop
of the data packet. Route error messages do not need to be
reliable, because they are repeated for each such data packet.

In the following, we will assume that a request follows
the pathfvk; : : : ; v0g in a route computation, where node
vk issues the request and nodev0 issues the reply. Node
v0 may be the destination itself or an intermediate node
replying on behalf of the destination. At a nodevi, letMi =
minfvk; : : : ; vi+1g be the minimum predecessor label, which
is carried in the request. At nodevk, letMk be1. This value
is cached at nodei. Manifestly,Mi �Mi+1.

When a nodek requires a route to the destination, it places
its current label in a request# that is flooded over the network.

1/2

ABCDE
1/1

T

0/11/1 -- ---- --
1/1 1/1 1/1 1/1

0/1
2/3

1/22/3
4/5

3/44/5
3/45/6

Fig. 1. Initial graph labeling

A flooding mechanism is described in Section III. We assume
that a node only processes a given request once. As each node
i relays the request, it caches the requested orderingL# as
Mi. It also caches the last-hop of the request, so a reply
may follow the reverse path of the request. Nodei places
the minimum ofMi, and its own label,Li, in the relayed
request. When the destination, or some other nodej with non-
zero out-degree and labelLj < L#, receives the request, it
may send an advertisement? along the reverse path of the
request. Nodej places its labelLj in the advertisement. Each
nodei along the reverse path creates a successor route to the
destination and relays the advertisement. Nodei will relabel
itself, generally choosing the next-elementL?

+, so long as
it maintains order (Definition 1). Otherwise, nodei will split
the ordering ofL? and the cachedMi. The advertisement
progresses until it reachesk. If a node receives an infeasible
advertisement (L? 6< Li) but has positive out-degree, it may
issue a new advertisement based on its current label.

Example 1:Consider the network shown in Fig. 1 which
uses the proper fraction ordinal set. NodeE issues a request
for a route to destinationT . Initially, T has the label0=1 and
all other nodes are unlabeled, which is equivalent to having the
1=1 label. NodeE places its label in the request, which goes
hop-by-hop carryingL# = 1=1. When nodeT receives the
request, it issues a reply with the labelLT? = 0=1. When node
A receives the reply, it splitsMA = 1=1 andLA? , taking on
the new labelLA = 1=2. NodeA issues a new advertisement
with labelLA? = LA. This process continues with each node
splitting the reply label and the cached predecessor label. The
final successor graph has the topological ordering5

6 !
4
5 !

3
4 !

2
3 !

1
2 !

0
1 .

In Definition 1, we state four inequalities that we show
maintain a topological order and thus a DAG. An algorithm
that chooses a new labelG must be specific to the ordinal
setL, and is thus not part of the general SLR description. In
Section III, Algorithm 1 satisfies Definition 1 for the proper
fraction ordinal set.

Definition 1 (Maintain Order):For an advertisement?
with terminusk, let a nodei have a current labelLi and
a cached orderingMi. If node i chooses new labelGi < 1
that satisfies Eqs. 3 — 6, the new labelGi is said tomaintain
order in the graph.

Gi � Li (3)

Gi <Mi (4)

L? < Gi (5)

Simax < Gi (6)

3

ABFGH
2/3

T

0/13/4 2/3
3/4 2/3 2/3

3/5
1/23/5

2/3
5/82/3

5/83/4

1/22/33/4

Fig. 2. Graph re-labeling

Eq. 3 ensures that the new label satisfies existing prede-
cessor order. Eq. 4 ensures that the advertisement relayed by
nodei is feasible along the reverse path to nodek, assuming a
sufficiently stable network during the route calculation. Eq. 5
is similar to the feasibility condition SNC of DUAL and
prevents successor loops. Hop-by-hop, as long as each node
issuing ? has a label less than the next node’s label, it is
impossible for that choice of successor to create a loop. Such
an advertisement is calledfeasible. Eq. 6 states that if a node
has existing successors, it must keep its label in-order with
respect to them.

If all nodes executing SLR maintain order in their choices of
labels based on advertisements, then labels are non-increasing
with time. This is a direct result of Eq. 3.

It is possible for a node to receive a feasible advertisement
(Eq. 5) that does not satisfy all four inequalities. Eqs. 3 – 5
have simultaneous solutions (see Theorem 4), but to satisfy all
four a node may need to eliminate certain existing successors
to reduceSimax such that it is no larger thanL?.

Example 2:To illustrate the re-labeling process, consider
the network established in Fig. 1. At some later time, nodesF ,
G, andH appear, as shown in Fig. 2. NodesF , G andH have
empty successor sets, but they once knew a route toT , so they
have node labels. NodeH issues a request with labelLH# =
3=4. NodeG cachesMG = 3=4, and issues a new request
LG# = minfLG;L

H
#g. NodeF receivesLG# = 2=3, and caches

it asMF . It relaysLF# = 2=3. NodeB has a successor toT ,
butLB 6< LF#, so it cannot reply. It relays the request. Finally,
nodeA may reply becauseLA < LB# andA’s successor set
is not empty. It sends an advertisement withLA? = LA. As
in the previous example, nodesB andF relabel themselves
based on splitting the cached predecessor minimum and the
advertised label. NodesG andH , however, satisfy Eq. 4 with
their current labels, so no change is necessary. All nodes in
Fig. 2 now have a successor path toT and the topological
order is 3

4 !
2
3 !

5
8 !

3
5 !

1
2 !

0
1 . In truncated decimal,

the labels are(0:75; :66; :625; :6; :5; 0).
Theorem 1 (Predecessor Ordering):A node i choosing a

new labelGi that maintains order preserves predecessor order-
ing. That is, in an existing DAGD = (U;A), nodei maintains
Gi < Lx for all nodesx where(x; i) 2 A.
Proof: We show that if nodei sends an advertisement at time
t0 to create a predecessor link(x; i) at time t2 > t0, nodei
may change its own label at any timet1 > t0 and maintain
Li(t2) < Lx(t2), regardless of the sequencing oft1 relative
to t2.

For a given predecessor nodex of i, node i transmitted
an advertisement that established the link(x; i) at time t0,

being the most recent advertisement fromi to x. By Eq. 3,
nodei’s label must be non-increasing with time, so the most
recent advertisement is always no greater than an earlier
advertisement. Once a predecessorx chooses nodei as a
successor, it can never decrease its own label to be less than
nodei’s label at timet0 by Eq. 6. Therefore, nodex’s label
is bound from the bottom byLi(t0) < Lx(t > t0) so long
as x maintains the successor link or until it receives a new
advertisement fromi.

At time t1 > t0, nodei changes its label. By Eq. 3, the new
labelGi(t1) � Li(t0).

The timet2 at which nodex receives, processes, and creates
the link (x; i) may be at any time aftert0 and may be after
t1. However,Li(t0) < Lx(t2) by the assumption that the
advertisementi sent to create link(x; i) is feasible forx.

If t2 < t1, then Li(t2) � Li(t0), so Li(t2) < Lx(t2).
If t2 � t1, then by Eq. 3 and the transitivity of the partial
orderingGi(t1) � Li(t1) � Li(t0). At time t1, nodei adopts
Li(t1) Gi(t1). At time t2, Li(t2) � Li(t1), therefore
Li(t2) < Lx(t2).

Theorem 2 (Successor Ordering):Without creating a loop,
nodei may accept an advertisement? with labelL?, so long
asL? < Li.
Proof: Let node j be the issuer of?. At time t0 it sets
L? Lj(t0) and transmits?. Node i receives? at time t1.
We must show thatLj(t1) < Li(t1), which maintains the
topological order of the graph, and thus nodei cannot be
on nodej’s successor path. By assumption,L? < Li(t1), so
Lj(t0) < Li(t1). Because node labels are non-increasing with
time,Lj(t1) � Lj(t0), soLj(t1) < Li(t1).

Theorem 3 (Loop-freedom):If all nodes maintain order in
the graph, SLR is loop-free at every instant.
Proof: By theorems 1 – 2, each node maintains both prede-
cessor and successor ordering at all times. The node labels are
therefore in a topological order, which induces a DAG.

The next theorem states that a solution to the path finding
problem always exists in SLR protocols, so long as the
network is stable during a route calculation. It is a general
problem of routing protocols that if the underlying network is
changing rapidly, convergence becomes difficult or impossible.
Simulations show that SRP finds routes even with constant
mobility.

Theorem 4 (Existence):Assuming no label changes apart
from those caused by a request# and reply?, nodei may
always find a labelG that maintains order based on?.
Proof: We do not consider Eq. 6, because a node may trivially
satisfy it by dropping all existing successors and taking up only
the path induced by?.

To show thatG simultaneously satisfies the other three
inequalities, we proceed by induction. Let the request path be
fvk; : : : ; v0g. Let nodev0 – which does not change its label
– issueL0? < M0. For the base case, at nodev1, we have
L0? <M0 impliesL0? <M1 andL0? < L1. Therefore, if we
can find aG1 that satisfiesL0? < G1 < minfM1;L1g, we will
satisfy all three inequalities. Because the ordinal set is dense,
such a label exists.

4

In the inductive step at some nodei, we know that the
advertisement issued by nodei � 1 satisfiesLi�1? < Mi�1.
This impliesLi�1? <Mi andLi�1? < Li. Therefore,Gi must
satisfyLi�1? < Gi < minfMi;Lig. Because the ordinal set is
dense, such a label exists.

III. SPLIT-LABEL ROUTING PROTOCOL

The Split-label Routing Protocol (SRP) implements an
ordering based on a sequence numbersn and a feasible
distance proper fractionm=n constructed from the ordered pair
F = (m;n). The composite label is denotedO = (sn;F). As
noted above, the set of proper fractions is a dense ordinal set.
We use Eq. 1 to split pairs of fractions and Eq. 2 to compute
a next-element.

For a practical implementation, we use 32-bit unsigned
integers form andn, which will put an upper bound on the
number of times we may interpolate between two fractions
without reductions. One observes that the mediant of two
proper fractionsm=n and p=q involves the sumn + q, which
is always greater thanm + p. The least upper bound on the
number of times we may do this in a 32-bit unsigned integer
is found from the Fibonacci sequence to be 45 times. Thus,
this scheme can mask at least 45 ordering violations along a
path without requiring a sequence number increase to reset a
path. The maximum number of hops is in the billions.

Similarly to LDR [7], we use a 64-bit time-stamp sequence
number. This avoids reset on reboot and avoids wrap-around
problems. It avoids wrap-around because we assume a node
will not live longer than its real-time clock can count.

SRP is inherently multi-path. A node may choose to use
one or more feasible successors, based on advertisements in
the network. We do not specify a mechanism to choose good
multi-paths or ensure that they are link or node disjoint. A
simple implementation of SRP could use a single successor
chosen from the min-hop set.

SRP uses a messaging procedure similar to AODV, but
with extensive modifications to the packet fields. SRP uses
the route request (RREQ), route reply (RREP), route error
(RERR) and route acknowledgment (RACK) packets from
AODV. The RERR is the same, and we do not discuss it.
The RACK is modified to carry thesrc field and the newly
introducedrreqid field from the corresponding RREP packet,
but otherwise its use is the same as in AODV. In the following,
we only discuss the RREQ and RREP packets.

All multi-hop control packets include anAge field, similar
to OSPF [13, pp. 79ff]. A node must increase the age for
queuing time and estimated link transmission time. A node
must drop any control packet with an age that equals or
exceeds the constantDELETE PERIOD, which we take as
60 seconds. Under certain conditions, a node may forget about
its current label for a destination afterDELETE PERIOD,
so it is vital that no packets remain in the network that
references the forgotten label.

A RREQ has two parts. The solicitation piece is the tuple
fsrc; rreqid; dst; dstseqno; F; d, agsg. The advertisement
piece is the tuplefsrc; srcseqno; lfd, ld, lifetime ; agsg,

wheresrc andags are shared between the two pieces. The
fieldssrc anddst are the unique node identifiers for the source
of the RREQ and the sought destination, respectively. The
rreqid is a sequence number used to identify the RREQ. It
controls flooding and prevents duplicates.d is the measured
distance of the RREQ packet as it travels the network, and
represents the cumulative traversed link costs. If the source
has any information about the destination, it places the known
sequence number indstseqno and stored feasible distance in
F. Otherwise, the source sets the flagU bit indicating it has no
stored information about the destination. SLR introduces theN
bit to indicate that a RREQ is no longer an advertisement for
the source and that nodes receiving it cannot build a reverse
path from it.

If a node transmitting a RREQ has an active route to
the source, it may advertise the route in the RREQ. In
this case, the last-hop feasible distanceLF#

T and last-hop
measured distanceld#T are set according to the rules below
for advertisements. Note thatd is not the same asld , which
measures the unicast distance to the source. Thesrcseqno
is the advertised source sequence number for the route. The
lifetime is the maximum time a node may cache the advertised
route todst without using it.

A RREP packet is tuplefsrc; rreqid; dst; dstseqno; LF,
ld , lifetime ; agsg, which is the same as the advertisement
portion of a RREQ, except for a few field names. In a RREQ,
the advertisement is for the fieldsrc while in a RREP, the
advertisement is for the fielddst, with a similar role reversal
for the destination sequence number. The other fields are the
same as in a RREQ.

When a nodeA creates a routing entry for a destination
T with next-hopB based on advertisement?, it storesB’s
ordering asSAT;B (sn?T ;F

?
T). NodeA maintains its own

label forT inOA
T (snAT ;F

A
T). SRP also tracks per successor

the measured distance to a destination as the cumulative link
cost. Because the measured distance is not used in the routing
protocol for path computations, we do not discuss it further.
NodeA is free to use any successor contained in the successor
tableSAT .

Definition 2 (Route Type):A given nodeI may have an
activeor invalid route for a destinationT . The route is invalid
if the setSIT is empty, otherwise it is active. As per AODV,
routes time out if not used. They may also become invalid due
to channel errors or RERR messages.

Definition 3 (Node State):At a given nodeI for destination
T , node I may be assignedor unassigned. If I has an
orderingOI

T , it is assigned. Otherwise, it is unassigned. A
node must cache its ordering for each destination for at
leastDELETE PERIOD seconds after the route becomes
invalid, as per AODV.

Definition 4 (FD proper fraction ordering):The feasible
distance proper fraction has a strict partial order< defined in
the normal sense for two fractions. LetFAT = (m;n) and let
F
B
T = (p; q). The propositionFAT < F

B
T is true if and only if

mq < np. Let the notation(0; 1) = (0; 1) and(1; 1) = (1; 1).
Definition 5 (Ordering Criteria (OC)):The set

5

O = (sn;F) has a strict partial ordering�. For two
instancesOA

T andOB
T , the propositionOA

T � O
B
T is true if

and only if one of the following holds:

snAT < snBT (7)

snAT = snBT ^ F
B
T < F

A
T (8)

An unassigned node may be thought to have the maximum
ordering(0; (1; 1)). An ordering(sn; (m;n)) is called finite if
m=n < 1. The minimum functionminfOA

T ;O
B
T g returnsOB

T

if OA
T � O

B
T or OA

T otherwise.
OA
T � O

B
T reads as “B is a feasible in-order successor for

A to destination T.” The sequence number follows a reversed
sense of increasing order than the feasible distance. A higher
sequence number implies a fresher route to the destination and
supersedes all routes with lower sequence number.

Definition 6 (Ordering Addition):For some proper fraction
p=q and finite orderingOA

T = (snAT ; (m;n)), the notation
OA
T + p=q is defined as(snAT ; (m + p; n + q)). Clearly, if

m=n < p=q, thenOA
T + p=q � O

A
T .

Definition 7 (Node Initialization):When a nodeA initial-
izes, it setsOA

A (snAA; (0; 1)). snAA is a new non-zero
sequence number, as described above. For every other node
B, A is considered to haveOA

B (0; (1; 1)), but that value
does not need to be stored.

When applied to a route advertisement,O?
T means the order-

ing (sn?T ;LF
?
T). TheLF is carried in all RREP packets and in

the advertisement portion of RREQ packets. For a solicitation,
O#
T means the ordering of the request(dstseqno;F). If the

U bit is set in #, then the solicitation is considered unassigned
for T .

The destinationT may respond to any solicitation for itself.
Node T is always in-order for any other node because its
stored sequence number can never be less than what is known
in the network and its feasible distance fraction to itself is the
minimum fraction. IfT responds to a solicitation with the reset
required bit set, it must ensure that the advertisement has a
larger sequence number than requested. An intermediate node
may send a route advertisement on behalf ofT if it satisfies
the Start Distance Condition.

Condition 1 (Start Distance Condition (SDC)):Node I
may initiate an advertisement? for a solicitation # for
destinationT if I has an active route toT , and either
of the following conditions is satisfied:snIT > sn

#
T or

O#
T � O

I
T ^ :rr

#
T

As per LDR [7], a node may beactive, passive, or engaged
for a routing computation identified by the pair (source,
rreqid). The RREQ ID is a source-specific sequence number,
used to control the flooding of a RREQ. When a node initiates
a RREQ, it becomes active. When a node relays a RREQ, it
becomes engaged. Only a passive node may be come active or
engaged per (source, rreqid). When a node becomes engaged,
it must cache the tuplefi; IDi;O

#
T ; lasthopg so replies may

follow the reverse path.
Procedure 1 (Initiate Solicitation):A nodeA that requires

a route for destinationT first checks to see if it is active for

T . If it is, A should queue the packet that requires the route.
If A is not active forT , it becomes active and increments
its rreqid. Let IDA be the incremented identifier.A issues
a solicitation forT identified by(A; IDA) and starts a timer
with expiry t = 2 � ttl � latency, wherettl is the time-to-live
of the broadcast flood andlatency is the estimated per-hop
latency of the network. If the timer expires,A may retry the
solicitation and increase thettl based on network policies. If
after the final attempt,A does not find a route toT , A should
inform the packet origins of the failure and drop the queued
packets.

If A is assigned forT ,A should populate the sequence num-
ber and feasible distance fields of the solicitation. Otherwise,
A sets theU bit to indicate these fields are unknown.

Procedure 2 (Relay Solicitation):A node B that receives
a solicitation(A; IDA) for destinationT firsts checks to see
if it is passive for(A; IDA). If it is not passive, it silently
ignores the solicitation. If it is passive, it becomes engaged.
If B satisfies SDC, it may issue an advertisement forT .
Otherwise,B relays the solicitation as constrained by thettl.
Let the last hop be nodeC (possibly equal toA) and let
the new solicitation be denoted byz. Node B must cache
the tuplefA; IDA; O

#
T ; Cg for a sufficient period of time

such that all instances of(A; IDA) have left the network and
any advertisements in response to(A; IDA) have had time to
complete.

d
z
T d

#
S + lcBC (9)

Oz
T

8>><
>>:

(0; (1; 1)) if # andB unassigned
OB
T if snBT > sn

#
T

minfOB
T ;O

#
T g if snBT = sn

#
T

O#
T otherwise

(10)

rr
z
T

8>><
>>:

0 if # andB unassigned
0 if snBT > sn

#
T

1 O#
T 6� O

B
T , F overflow

rr
#
T otherwise

(11)

Eq. 10 ensures that the label of the relayed solicitation has
the minimum label ofB and#. It corresponds to relaying the
minimal label in SLR.

Eq. 11 controls the path-reset request mechanism. The first
and second conditions set (or reset) theT bit to zero. If the
request and relay node are unassigned, there is no need to
request a path reset; any non-zero sequence number suffices.
If the relay node’s cached sequence number forT is greater
than the requested sequence number, nodeB may reset theT
bit becauseB has increased the requested sequence number by
Eq. 10. Any advertisement sent in response to the solicitation
functions as a path reset. The third condition demands a
path reset if the relay node is out-of-order and the feasible
distance fraction in# would overflow with another split. Let
F
?
T = (m;n) and letFBT = (p; q). If n+ q overflows a 32-bit

unsigned number, thenB must set theT bit . The sumn+q is
an estimate of the reply ordering. The fourth condition reflects
that the relay node is in-order and can pass the requestedT
bit as is.

6

Algorithm 1:
NEWORDER(OA

T , CA? , O?
T)

(1) Let CA? = (snC ; (m;n)) andO?
T = (sn?T ; (p; q))

(2) GAT (0; (1; 1))
(3) if snAT < sn?T
(4) if snC < sn?T
(5) GAT O

?
T + 1=1

(6) else if n+ q does not overflow
(7) GAT (sn?T ; (m+ p; n+ q))
(8) else if snAT = sn?T
(9) if CA? � O

A
T

(10) GAT O
A
T

(11) else if n+ q does not overflow
(12) GAT (sn?T ; (m+ p; n+ q))
(13) Eliminate anyi 2 SAT whereGAT 6� S

A
T;i.

(14) return GAT

A relay nodeB records the ordering of a solicitation.
The cached ordering of# is denoted asCB? , where the
advertisement? contains the(source; rreqid) pair used to
index in to the RREQ cache. This is equivalent to the minimum
predecessor orderM of SLR, but is indexed per solicitation.

As solicitations and advertisements progress through the
network, it might happen that a relay node has lower ordering
than is contained in the relayed packet. For advertisements,
the relay node must discard the advertisement and issue a new
advertisement, if possible. It may be that the relay node has
a lower label, but an invalid route, in which case it cannot
issue a new advertisement. For solicitations, the relay node
strengthens the relayed packet, as per Procedure 2.

Procedure 3 (Set Route):When a nodeA receives a fea-
sible advertisement? from B for destinationT with order-
ing O?

T , it must compute a new orderingGAT for itself by
Algorithm 1. If GAT is finite, nodeA setsOA

T GAT and
dAT d?T + lcAB ; otherwiseA must drop the advertisement. If
A accepts the route offered byB, it must cache the ordering
in it successor tableSAT;B O

?
T and computeSAT;max

maxfSAT g.
For advertisements in a RREQ or Hello packet, which do

not have a cachedCA? , or if A is the terminus of a RREP
advertisement, useCA? (0; (1; 1)) in Algorithm 1.

If a node is the terminus of an advertisement and the
denominator of the feasible distance fraction exceeds a certain
thresholdMAX DENOM , the node should request a path
reset. To request a reset, the node transmits a unicast RREQ
along the forward path with theD bit set. This forces the
RREQ to travel along the unicast path to the destination which
issues a RREP with a larger sequence number. Each node
along the RREP path may set its distance toO? + 1=1. The
exact value ofMAX DENOM is not important, as long as
it is large enough to not happen often and small enough to
prevent overflow. We use a value of one billion.

If a node has an active route to the destination of an adver-
tisement and is not itself the terminus of the advertisement,
the node should issue a new advertisement for the route. If the

node does not have an active route to the destination (because
it could not update its routing table based on an infeasible
advertisement), the node must not relay the advertisement. If
the advertisement is a RREQ packet, the relay node will set the
N bit to indicate the RREQ is no longer an advertisement for
the source, but will still relay the packet per the Procedure 2.
TheN bit is not part of the current AODV specification. If the
node replying to the RREQ does not have a reverse path, it will
set the new correspondingN bit in the RREP indicating such.
When the source receives a RREP with theN bit set, it may
send a unicast RREQ probe along its forward path with the
D bit set, which forces the RREQ to travel to the destination.
The source should increase its sequence number to ensure that
the reverse path is built. Nodes otherwise should not increase
their sequence number when issuing a RREQ.

Procedure 4 (Relay Advertisement):If node A is not the
terminus of the advertisement (e.g., the source address in a
RREP), and it has an active route to destinationT that is
feasible forCA? , nodeA should issue a new advertisement for
T upon receipt of an advertisement for the destination. Node
A may create or update its own routing table by Procedure 3
upon receiving an advertisement, and uses its RREQ cache
to ensure that it does not forward more than one reply per
(source, rreqid) pair. Let the new advertisement be denoted
by y, thenOy

T O
A
T andd

y
T dAT .

IV. A NALYSIS

We show that SRP is an instance of SLR. To do so, we
must show that the ordinal setO meets the criteria ofL and
that the choice of new node labels by Algorithm 1 maintain
order. Because the orderingO is finite in F, it is possible
that the implementation will not successfully terminate a
route calculation. We show that when it fails to successfully
terminate, it does so without creating loops.

We consider advertisements sent in response to solicitations.
Advertisements sent in RREQ packets are loop-free because
they must satisfy the same routing invariants as advertisements
in RREPs, but they are not guaranteed to build paths over the
entire network. Because they do not need to satisfy a specific
request, nodes are free to ignore Eq. 4. This means that for
a RREQ advertisement, a node keeps its existing label, or
decreases it to the limits of Eqs. 5 and 6 as desired.

Theorem 5:The orderingOA
T = (snAT ;F

A
T) satisfies the

conditions ofL.
Proof: The requirements forL is that it be dense, infinite,
with a greatest element, a strict partial order<, and a next-
element operator.O has a greatest element(0; (1; 1)). It has
a strict partial order� (Definition 5). The next-element may
be taken asO + 1=1.

To show thatO is dense, consider two distinct orderings
OA = (snA; (m;n)) andOB = (snB ; (p; q)), and letOA �
OB . We assume that the numerators and denominators of
the proper fraction are not bounded by 32-bit precision. In
cases where there is overflow, SRP either asks for a path
reset or terminates without adding a successor path. We show
by construction that there always exists a distinct ordering

7

OC = (snC ; (r; t)) such thatOA � OC � OB . If OA and
OB have distinct sequence numbers, letOC OB + 1=1. If
snA = snB , then letOC (snA; (m+ p; n+ q)).

We now show that node labels chosen via Algorithm 1 either
maintain order, as per Eqs. 3 – 6, or return an infeasible results
which prevents a new link begin added to the successor graph.
In both cases, the successor graph remains in topological order
and loop-free.

Lemma 1:At a nodeA, for a finite choice ofGAT based on
an advertisement?, it is always correct to usesn?T .
Proof: As in Algorithm 1, let CA? = (snC ; (m;n)) and let
O?
T = (sn?T ; (p; q)). NodeA’s ordering isOA

T = (snAT ; (r; s)).
We must show that for a feasible advertisement? bothsnAT �
sn?T andsnC � sn?T .

Because the advertisement is feasible atA, OA
T � O

?
T ,

which impliessnAT � sn?T .
As was shown in Theorem 4, a feasible advertisement will

satisfy both the current node’s label and its predecessor’s label
along the reverse path because the advertisement was based
on the minimum label along the path. So,snC � sn?T .

Theorem 6:In an ordered graph, a new ordering computed
by Algorithm 1 at nodeA for destinationT in response to an
advertisement? either maintains order or returns the unordered
result (0; (1; 1)), which forces Procedure 3 to ignore?.
Proof: From Lemma 1, we see there are two conditions for
Algorithm 1, which we call Fact 1 and Fact 2:OA

T � O
?
T

(Fact 1) andCA? � O
?
T (Fact 2). We show that in each of

the five cases where the algorithm assignsG , that assignment
maintains order considering the conditions necessary for that
assignment to be returned. All five assignments in Algorithm 1
explicitly satisfy Eq. 5. Line 13 satisfies Eq. 6. Therefore, we
must show that in each case,G satisfies Eqs. 3 – 4.

Case I: Line 2. There are two conditions that return this
value. If snAT > sn?T , the value is returned, but this contradicts
the assumption that? is feasible atA, so this case never occurs.
The second condition is ifsnC = sn?T andn+q overflows. In
such a case, we cannot compute a valid node label and must
discard the advertisement. It is correct to return the infinite
ordering(0; (1; 1)).

Case II: Line 5. The precondition thatsnAT < sn?T implies
that any orderingX = (sn?T ; (x; y)) is in-order forA, so
in particularOA

T � O
?
T + 1=1, which satisfies Eq. 3. The

preconditionsnC < sn?T likewise implies thatCA? � O
?
T+1=1,

which satisfies Eq. 4.
Case III: Line 7. As in Case II, anyX = (sn?T ; (x; y))

satisfies Eq. 3. By Fact 2 and the precondition for this case
thatsnC = sn?T , we may find anyG such thatCA? � G � O

?
T ,

where all three only vary in the feasible distance fraction. This
further implies thatp=q < m=n, so G O?

T + m=n is such
a choice. It maintains the orderingm=n < m+p

n+q < p=q and
satisfies Eq. 4.

Case IV: Line 10. By the precondition of this case that
CA? � O

A
T , the choiceG OA

T trivially satisfies Eqs. 3 – 4.
Case V: Line 12. The preconditions of this case imply that
OA
T � C

A
T , so anyG that satisfiesCAT � G � O

?
T will satisfy

TABLE I

PERFORMANCE AVERAGE OVER ALL PAUSE TIMES

protocol deliv. ratio net load latency (sec)

SRP 0:830 � 0:010 0:905 � 0:105 0:927� 0:084
LDR 0:766 � 0:010 4:364 � 0:212 1:172� 0:142

AODV 0:741 � 0:042 4:996 � 1:062 2:769� 0:416
DSR 0:500 � 0:129 5:394 � 2:447 5:725� 2:370

OLSR 0:710 � 0:013 4:728 � 0:198 0:781� 0:047

Eqs. 3 – 4. The other precondition of this case thatsnC = sn?T
makes the solution equivalent to case III.

Theorem 7:Solicitations and advertisements in SLR do not
loop if there are no node failures.
Proof: For a given calculation(A; IDA), a node may be
passive, engaged, or active. A node enters any calculation at
most once. Therefore, the propagation graph of the calculation
forms a tree. By using the cached information at engaged
nodes, advertisements for the calculation follow paths only
in the calculation tree.

If a node unicasts a solicitation, it is guaranteed to not flow
in a loop, even if the underlying routing table contains loops.
This is because nodes enter the engaged or active states at most
once per computation, regardless of the unicast or broadcast
nature of the solicitation. Thus, theT bit does not affect the
loop-freedom of control packets.

If a node fails, it is possible that RREQ and thus RREP
packets could loop. This is because a relay node may forget
that it is engaged for a computation and become engaged in
the computation multiple times, but no more than once per
failure. Because RREQ and RREP packets are subject to time-
to-live, control packet loops caused by node failures are not
permanent. RREP packets will never loop more than one hop,
because at that hop the advertisement is infeasible and will be
dropped. Such loops cannot create routing-table loops.

0

50

100

150

200

250

300

350

400

0 50100 200 300 500 700 900

M
A

C
 D

ro
ps

 (
pa

ck
et

s)

pause time (seconds)

SRP
LDR

AODV
DSR

OLSR

Fig. 3. Average MAC layer drops 100-nodes, 30-flow

V. SIMULATIONS

We present simulation results of uni-path SRP done in
GloMoSim [2]. We compare the performance to AODV, DSR,
LDR, and OLSR [3].

Like other ad hoc routing protocols, SRP uses several
heuristics to improve performance in simulated network

8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50100 200 300 500 700 900

D
el

iv
er

y
R

at
io

pause time (seconds)

SRP
LDR

AODV
DSR

OLSR

Fig. 4. Delivery ratio 100-nodes, 30-flows

0.1

1

10

0 50100 200 300 500 700 900

N
et

w
or

k
Lo

ad

pause time (seconds)

SRP
LDR

AODV
DSR

OLSR

Fig. 5. Network Load 100-nodes, 30-flows

0.1

1

10

0 50100 200 300 500 700 900

D
at

a
La

te
nc

y
(s

ec
on

ds
)

pause time (seconds)

SRP
LDR

AODV
DSR

OLSR

Fig. 6. Delivery ratio 100-nodes, 30-flow

0

20

40

60

80

10

120

140

0 50100 200 300 500 700 900

A
vg

. n
od

e
se

qu
en

ce
 n

um
be

r

pause time (seconds)

SRP
LDR

AODV

Fig. 7. Average Sequence Number (SRP is exactly 0)

topologies. SRP, along with AODV, DSR, and LDR, uses
link-layer unicast loss detection, without hello packets. Our
implementation uses a packet cache, similar to DSR. When
the link layer reports a packet loss, the routing protocol will
break that next hop and seek a new path, resending the
dropped packet. DSR in simulation also uses a packet cache
(salvaging). AODV uses local repair. We found that under
high load, RREQ packets need to travel several hops before
allowing a node to reply. This avoids “false positive” RREPs.
When a node sends a RREQ, it lies about its ordering. If
a node’s true ordering isp=q, it sets the RREQ ordering to
(p�1)=(q�1). If p = 1, the node sets the RREQ ordering to
(p�k�1)=(q�k�1), where we usedk = 10000 in simulation.

Our simulation parameters generally follow those in [16].
We use an 802.11 MAC layer on a 2200m x 600m terrain
with 100-nodes and 30 CBR traffic flows. This is the highest
traffic rate modelled in [16]. Each CBR packet is 512 bytes
and the flows send 4pps, totaling 120pps, or just over 490
kbps network-wide. The channel is 2 Mbps. Each flow lasts
for a mean of 60 seconds taken from an exponential variate.
At the beginning of each flow, a random source and sink is
chosen, and the simulation maintains 30 simultaneous flows.
To model mobility, nodes move between 0 m/s and 20 m/s in a
random-waypoint pattern with 8 pause times. A pause time of
900s represents no mobility and a pause time of 0s represents
constant mobility.

Each data point represents the average of 10 trials over

different topologies, traffic endpoints, and random number
seeds. For each of the 10 trials, we fix the topology and
traffic pattern using off-line generated mobility and packet
generation scripts. This means that when we compare, for
instance, AODV and SRP in a given trial, they both have
the same node mobility and traffic demands. Performance
differences should be due entirely to how the routing protocol
creates overhead and regulates data traffic.

We present three metrics. The delivery ratio is the total
number of CBR packets received divided by the total number
of CBR packets transmitted. The network load is the total
number of control packets sent divided by the number of
CBR packets received. The latency is the mean end-to-end
life time in seconds per CBR packet in the network. Each
data point represents the average of 10 trials. Below, when
we say two measurements are identical, we mean they are
statistically identical and have overlapping 95% confidence
intervals. Likewise, when we say something is better or worse,
we mean it is so with disjoint 95% confidence intervals. In
the figures, vertical bars show the 95% confidence interval. In
Table I, we show the 95% confidence interval of the averages
over all pause times.

Fig 4 shows the delivery ratio of each protocol. AODV and
OLSR average around a 73% delivery ratio at this offered load.
LDR averages around 77%. It is statistically identical to OLSR
at low mobility and slightly better at high mobility. SRP has
a higher delivery ratio that the other protocols at almost all

9

times. Looking at Table I, we see that overall, SRP has an 8%
(:83�:77:77) higher delivery ratio than LDR, a 12% higher ratio
than AODV, and a 17% higher ratio than OLSR.

In our simulations, DSR exhibits poor performance with
node mobility. At lower loads than 100-nodes, 30-flows, the
performance of DSR is better and generally comparable with
OLSR or AODV. However, at this high load, DSR suffers a
deep performance drop with mobility. Fig. 3 shows the number
of MAC layer drops per node. We see that DSR has a very
high MAC layer drop rate, and that it is inversely proportional
to the delivery rate. We are not sure why this happens, but the
effect is seen in both GloMoSim and Qualnet [18].

Fig. 5 shows the network load. In this semi-log graph, SRP
has a much lower load than the other protocols. SRP has0:2
(0:94:4) the load of LDR,0:19 the load of OLSR, and0:18 the
load of AODV. A savings of over 80%.

Fig. 6 shows the packet latencies. OLSR is a pro-active
protocol, but is not loop-free at every instant. As a proactive
protocol, it sends route advertisements according to a schedule.
This leads to high overhead, but generally very low latency
because all nodes have routes to all destinations. From the
figure, we see that OLSR and SRP have identical latencies, but
the average in Table I gives OLSR a slight statistical advantage
over SRP. SRP is better than AODV and LDR, according to
the figure and the table.

Fig. 7 plots the average node sequence number for SRP,
LDR, and AODV. LDR and AODV begin with a sequence
number of zero, while SRP begins with a sequence number
of one. For the purpose of this graph, we have subtracted one
from SRP so all protocols have a base of zero. As expected,
AODV has the highest node sequence number because that is
the only means for the protocol to prevent loops. LDR has
a much lower sequence number, because it can often repair
broken paths by only using feasible distance ordering. SRP
has identically zero sequence number. In the 80 simulations
shown in the graphs (8 pause times, 10 trials each), SRP never
needed to increment the sequence number to repair a path. The
maximum denominator stayed under 840 million. In general,
however, we would expect over time the need to reset a path
due to 32-bit overflow.

VI. CONCLUSION

We presented a new approach to loop-free routing called
Split Label Routing (SLR) and a specific protocol for on-
demand routing in wireless networks called Split-label Routing
Protocol (SRP). Routing protocols based on SLR maintain
node labels in a topological order, which induces a directed
acyclic graph per in-use destination. SLR generalizes the
concept of a feasible distance from DUAL [8] and does not
require a diffusing computation. The novel feature of SLR is
that it uses a dense ordinal set, so it may insert new nodes
and relabel existing paths without needing to relabel existing
predecessors. SRP is an instance of the SLR class, and uses
a ordinal set comprised of a sequence number and a feasible
distance proper fractionm=n, wherem and n are positive

integers, withm < n, including a zero element and one
element.

Results from simulation experiments illustrate that SRP
outperforms other state-of-the-art protocols at high load. SRP
has better delivery ratio and much lower network load than
other protocols. Its packet latency is almost as good as OLSR,
a pro-active routing protocol for wireless networks.

Our description of SRP does not incorporate fraction reduc-
tions. We would like to find a method to interpolate relatively
prime proper fractions that yields a relatively prime proper
fraction. Our current research is developing methods based on
walking a Farey tree [12]. Another open area is how to choose
good multipaths to maximize link or vertex disjointness.

ACKNOLWDGEMENT

This work was supported in part by the U.S. Air Force/OSR
under grant No. F49620-00-1-0330, and by the Baskin Chair
of Computer Engineering at the University of California at
Santa Cruz.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows:
theory, algorithms, and applications. Prentice Hall, 1993. Includes
bibliographical references (p. 821-839) and index. English.

[2] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla.
GloMoSim: A scalable network simulation environment. Technical
Report 990027, UCLA Computer Science Department, 1999.

[3] T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum,
and L. Viennot. Optimized link state routing protocol. IETF Internet
draft, draft-ietf-manet-olsr-06.txt, Sep 2001.

[4] M. S. Corson and A. Ephremides. A distributed routing algorithm for
mobile wireless networks.Wireless Networks, 1:61 – 81, 1995.

[5] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing
computations.Information Processing Letters, 11(1):1–4, Aug. 1980.

[6] E. M. Gafni and D. P. Bertsekas. Distributed algorithms for generating
loop-free routes in networks with frequently changing topology.IEEE
Trans. Comm., COM-29(1):11–18, Jan. 1981.

[7] J. J. Garcia-Luna-Aceves, M. Mosko, and C. Perkins. A new approach
to on-demand loop free routing in ad hoc networks. InPODC 2003,
pages 53 – 62, July 2003.

[8] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computa-
tions. IEEE/ACM Transactions on Networking, 1(1):130–41, Feb. 1993.

[9] E. V. Huntington. The Continuum and other Types of Serial Order.
Harvard University Press, Cambridge, MA, second edition, 1942.

[10] D. Johnson, D. Maltz, Y.-C. Hu, and J. Jetcheva. The dynamic source
routing protocol for mobile ad hoc networks (DSR). IETF Internet draft,
draft-ietf-manet-dsr-07.txt, Feb 2002.

[11] A. Y. Khinchin. Continued Fractions. Dover Publications, Mineola, NY,
third edition, 1997.

[12] D. W. Matula and L. D. McFearin. Ap � p bit fractional model of
binary floating point divison and extremal rouding cases.Theoretical
Computer Science, 291(2):159 – 82, Jan. 2003.

[13] J. T. Moy. OSPF: anatomy of an Internet routing protocol. Addison-
Wesley, Reading, MA, USA, 1998.

[14] V. D. Park and M. S. Corson. A highly adaptive distributed routing
algorithm for mobile wireless networks. InIEEE INFOCOM, pages
1405–13 vol.3, Apr. 1997.

[15] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on demand distance
vector (AODV) routing. IETF Internet draft, draft-ietf-manet-aodv-
10.txt, Mar 2002.

[16] C. Perkins, E. Royer, S. Das, and M. Marina. Performance comparison
of two on-demand routing protocols for ad hoc networks.IEEE Personal
Communications, 8(1):16 – 28, Feb 2001.

[17] J. Raju and J. J. Garcia-Luna-Aceves. A new approach to on-demand
loop-free multipath routing. InIC3N’99, pages 522–7. IEEE, Oct. 1999.

[18] Scalable Network Technologies. Qualnet simulator. http://www.scalable-
networks.com, 2001.

10

